Decomposition Attack for the Jacobian of a Hyperelliptic Curve over an Extension Field

Koh-ichi Nagao (Kanto Gakuin Univ.)
Outline of this talk

1. Summary of Index calculus
 1-1 An example of index calc. of \mathbb{F}_p^*
 1-2 Some notations
 1-3 Index calc. of Jacobian over a general finite field

2. Index calc. of Jacobian over an extension field
 2-1 Elliptic curve case (Gaudry)
 2-2 Improvement by using function field.
 \rightarrow hyperelliptic curve case
 2-3 example
Index Calculus of \mathbb{F}_p^*

DLP: $a, b \in \mathbb{F}_p^*$ s.t. $a^n = b \Rightarrow$ Find n

Factor base
$B_0 = \{-1, 2, 3, 5, 7..., p_n\}$

Collect more than $|B_0| + 1$ number of $a^i b^j \in <B_0>$

\rightarrow
Solve around $|B_0| \times |B_0|$ lin. alg. mod. $|\mathbb{F}_p^*|$
Example

\(p = 179, \ a = 23, \ b = a^{23} = 111, \ B_0 = \{2, 3\} \)

Collect relations

\[
\begin{align*}
&\ a^1 \cdot b^{20} = 96 = 2^5 3^1 \\
&\ a^2 \cdot b^{16} = 12 = 2^2 3^1 \\
&\ a^3 \cdot b^{17} = 27 = 3^3
\end{align*}
\]

Solving lin. alg. mod \(p - 1 \)

\[
\begin{pmatrix}
1 & 20 & 5 & 1 \\
2 & 16 & 2 & 1 \\
3 & 17 & 0 & 3 \\
3 & 60 & 15 & 3 \\
6 & 48 & 6 & 3 \\
3 & 17 & 0 & 3 \\
0 & 43 & 15 & 0 \\
3 & 31 & 6 & 0 \\
3 & 17 & 0 & 3 \\
0 & 86 & 30 & 0 \\
15 & 155 & 30 & 0 \\
15 & 69 & 0 & 0 \\
23 & -1 & 0 & 0
\end{pmatrix}
\times -1/69 \mod 178
\]

So we have \(a^{23} \cdot b^{-1} = 1 \mod 178 \)
Large prime variations of \mathbb{F}_p^*

Factor base and Large prime

$B = \{-1, 2, 3, 5, 7..., p_N\}$, $B_0 \subset B$

Large primes: $B \setminus B_0$

Collect enough number of $a_i b^j \in < B >$

→ eliminate the terms of $B \setminus B_0$

→ Solve around $|B_0| \times |B_0|$ lin. alg. mod. $|\mathbb{F}_p^*|$
Index calc. of group 1

G (Additive) Group, Solve DLP i.e.
$a, b \in G$ s.t. $n \cdot a = b \implies$ Find $n \in \mathbb{Z}/|G|\mathbb{Z}$

Factor base \cup Large prime $B(\subset G)$ (subset)
Factor base $B_0(\subset B)$ (subset)
Large prime $B\setminus B_0$

Further, we will assume
Assumption of Decomposition
$\exists N$ fix
For $g \in G$
$g = g_1 + g_2 + \ldots + g_N$ for $g_i \in B$
$O(1)$ probability
$O(1)$ cost (seeking g_i's)
Index calc. of group 2

Normal Index Calc.
The case \(B = B_0 \)
Collect more than \(|B| + 1 \) number of
\(i \cdot a + j \cdot b \in < B > \)
\(\rightarrow \) Solve around \(|B| \times |B| \) lin. alg. mod. \(|G| \)

Note the cost of lin. alg. is dominant.

Large Prime method
Collect enough number of
\(i \cdot a + j \cdot b \in < B > \)
\(\rightarrow \) Eliminate Large primes and
\(\rightarrow \) Solve around \(|B_0| \times |B_0| \) lin. alg. mod. \(|G| \)
Index calc. of Jacobian (over general finite field)

C/\mathbb{F}_q curve genus g, $G = \text{Jac}_c(\mathbb{F}_q)$, solve DLP

1) Gaudry

$B = B_0 = C(\mathbb{F}_q) = \{P - \infty | P \in C(\mathbb{F}_q)\}$

\implies it works well. Cost $O(q^{2+\epsilon})$.

2) Revalance (Gaudry, Harley)

Take $B_0 \subset B$(subset, only size is optimized).

Cost $O(q^{(4g-2)/(2g+1)+\epsilon})$.

3) Using Large prime Elimination (Thériault, Nagao, Gaudry, Thomé, Diem) Cost $O(q^{(2g-2)/g+\epsilon})$.
Index calc. of Jac. over extension field 1

C/\mathbb{F}_{q^n} curve genus g, $G = Jac_c(\mathbb{F}_{q^n})$, solve DLP

1) Gaudry

The case of Elliptic curve ($g = 1$)

E/\mathbb{F}_{q^n} elliptic curve, $G = E(\mathbb{F}_{q^n})$

$B = \{(x, y) \in E(\mathbb{F}_{q^n}) | x \in \mathbb{F}_q\}$

Index calc. works well (using Semaev’s formula).

Semaev’s formula

Given $(x, y) \in E(\overline{\mathbb{F}}_{p^n})$, $x_1, ..., x_n \in \overline{\mathbb{F}}_{p^n}$

$\exists \phi(X, X_1, ..., X_n) \in \mathbb{F}_{p^n}[X, X_1, ..., X_n]$, $\deg \phi = 2^{n-1}$, s.t.

$\phi(x, x_1, ...x_n) = 0 \iff (x, y) + (x_1, y_1) + ... + (x_n, y_n) = 0$ for some $(x_i, y_i) \in E(\overline{\mathbb{F}}_{p^n})$
Index calc. of Jac. over extension field 2

Recall

\[G = E(\mathbb{F}_{q^n}) \quad B = \{(x, y) \in E(\mathbb{F}_{q^n}) | x \in \mathbb{F}_q\} \]

Given \((x, y) \in G\),

Condition \(\exists (x_i, y_i) \in B (i = 1, \ldots, n) \)

\((x, y) + (x_1, y_1) + \ldots + (x_n, y_n) = 0\) induces

\(\phi(x, X_1, \ldots, X_n) = 0\) has some solutions \((X_1, \ldots, X_n) = (x_1, \ldots, x_n) \in \mathbb{A}^n(\mathbb{F}_p)\).

Prob. of \((x, y)\) being written by this form \(= 1/n! (= O(1))\).
Index calc. of Jac. over extension field \(3\)

Remark that \(x \in \mathbb{F}_{q^n}\) being the \(x\)-coor. of a fixed pt. of \(E(\mathbb{F}_{q^n})\).

Fix \([\alpha_1, \ldots, \alpha_n]\) base of \(\mathbb{F}_{q^n}/\mathbb{F}_q\).

\[
\phi(x, X_1, \ldots, X_n) \in \mathbb{F}_{q^n}[X_1, \ldots, X_n] \text{ is written by}
\]

\[
\phi(x, X_1, \ldots, X_n) = \sum_{i=1}^{n} \alpha_i \phi_i(X_1, \ldots, X_n)
\]

for some \(\phi_{x,i}(X_1, \ldots, X_n) \in \mathbb{F}_q[X_1, \ldots, X_n]\)

\[
\phi(x, X_1, \ldots, X_n) = 0 \text{ has some solutions } (X_1, \ldots, X_n) = (x_1, \ldots, x_n) \in \mathbb{A}^n(\mathbb{F}_q) \text{ is equiv. to}
\]

solving eq. system

\[
\phi_{x,i}(X_1, \ldots, X_n) = 0, \forall \mathbb{F}_q \quad (i = 1, \ldots, n)
\]

Find \(x_i\)

\(\rightarrow\) Solve degree \(2^{n-1}\), \(n\) variables, \(n\) equations

equations system over \(\mathbb{F}_q\)

\(n, g = 1\) small, \(q \rightarrow \infty\), Cost \(O(q^{(2ng-2)/ng+\epsilon})\).
Improvement of the algorithm 1 (Notation)
C/\mathbb{F}_{q^n} Hyperelliptic curve genus g (odd degree)
$\text{ch}(\mathbb{F}_q) \neq 2$, ∞ unique point at infinity,
$G = \text{Jac}_c(\mathbb{F}_{q^n})$, solve DLP
$B = \{(x, y) - \infty | (x, y) \in C(\mathbb{F}_{q^n}), x \in \mathbb{F}_q\}$ or
$B = \{(x, y) | (x, y) \in C(\mathbb{F}_{q^n}), x \in \mathbb{F}_q\}$
(Note. In Ell. cur. case, the same as Gaudry’s)
idea: Semaev’s formula \rightarrow function field
it also works well in Hyperell case.

D_0: Fixed reduced divisor
$D_0 = (\phi_1(x), \phi_2(x))$ mumford rep.
\[= Q_1 + Q_2 + ... + Q_g - (g)\infty \]

Definition D_0 decomposed \leftrightarrow
$D_0 + P_1 + P_2 + ... + P_{ng} - (ng)\infty \sim 0$ for some
$P_i \in B$
Pob. of D_0 being decomposed $= 1/(ng)!$
$\{P_i\}$ being called decomposed factor
Improvement of the algorithm 2

The case $g = 3, \ n = 2$ part 1

Explain the construction of Eq. sys. of above case

$\text{HEC } C : y^2 = f(x)/\mathbb{F}_q$, \quad $f(x) = x^7 + ... + a_0$

Fix reduced divisor $D_0 \in \text{Jac}(C/\mathbb{F}_q)$

1) Mumford rep. $D_0 = (\phi_1(x), \phi_2(x))$ s.t.
$\phi_1, \phi_2 \in \mathbb{F}_q[x], \phi_1 \text{ monic}, \ 3 \geq \deg \phi_1 > \phi_2,$
$\phi_2^2 - f(x) \equiv 0 \mod \phi_1$

2) Representation using points
$\exists Q_1, Q_2, Q_3 \in C(\overline{\mathbb{F}_q})$ s.t.
$D_0 = Q_1 + Q_2 + Q_3 - 3\infty$

D: divisor, $L(D) := \{h \in C(\overline{\mathbb{F}_q})|(h) + D \geq 0\}$

Theorem (Riemann Roch) $L(D)$ vector space
$\deg D \geq 2g - 1 \rightarrow \dim L(D) = \deg D - g + 1$
Improvement of the algorithm 3

The case $g = 3, n = 2$ part 2

Here, reduded divisor D_0 is fixed
Put $D = 6\infty - D_0 = 9\infty - (Q_1 + Q_2 + Q_3)$.

Then $\{\phi_1(x), \phi_1(x)x, (y - \phi_2(x)), (y - \phi_2(x))x\}$
is a base of $L(D)$.
When D_0 is decomposed, the points $\{P_i\}$ of
the form

$D_0 + P_1 + \ldots + P_6 - 6\infty = Q_1 + \ldots + Q_3 + P_1 + \ldots + P_6 - 9\infty \sim 0$

are the zeros of some elements of $L(D)$

Note. $h \in L(D)$, ord$_{\infty}h = 9$
\rightarrow h has term of $(y - \phi_2(x))x$

Put $h(x, y) := (A_0 + A_1x)\phi_1(x) + (B_0 + 1)(y - \phi_2(x))$.
where A_0, A_1, B_0 are the parameter moving \mathbb{F}_{q^2}.

Seeking cross pts of $h(x, y) = 0$ on C.
Improvement of the algorithm 4
The case $g = 3$, $n = 2$ part 3
Recall $C' : y^2 = x^7 + ... + a_0$

$$h(x, y) = 0 \rightarrow y = \frac{(A_0 + A_1 x)\phi_1(x) - (B_0 + 1)\phi_2(x)}{B_0 + x}.$$

Put

$$p(x) := (x + B_0)^2(x^7 + ...) - ((A_0 + A_1 x)\phi_1(x) - (B_0 + 1)\phi_2(x))^2.$$

Roots of $p(x) = 0$ are x-cor. of $Q_1, ..., Q_3, P_1, ..., P_6$

Put $g(x) := p(x)/\phi_1(x) = x^6 + C_5x^5 + ... + C_0$.

Then

1) Roots of $g(x) = 0$ are x-cor. of $P_1, ..., P_6$

2) Considering parameters as variable, $C_0, ..., C_5 \in \mathbb{F}_q^2[A_0, A_1, B_0]$, deg $C_i = 2$

3) D_0 decomposed $\rightarrow \forall x(P_i) \in \mathbb{F}_q$

$\rightarrow \exists a_0, a_1, b_0 \in \mathbb{F}_q \forall s.t. C_i(a_0, a_1, b_0) \in \mathbb{F}_q$.

Further, we seek the condition

$C_i(a_0, a_1, b_0) \in \mathbb{F}_q (i = 0, ..., 5)$
Improvement of the algorithm 5

The case \(g = 3, \ n = 2 \) part 4

Fix \([1, \alpha] \) base of \(\mathbb{F}_{q^2}/\mathbb{F}_q \)

Put new parameters \(A_{0,0}, A_{0,1}, A_{1,0}, A_{1,1}, B_{0,0}, B_{0,1} \) moves in \(\mathbb{F}_q \) s.t.
\[
A_0 = A_{0,0} + A_{0,1}\alpha \\
A_1 = A_{1,0} + A_{1,1}\alpha \\
B_0 = B_{0,0} + B_{0,1}\alpha
\]

Then \(C_i \) are considered in \(\mathbb{F}_{q^2} [A_{0,0}, A_{0,1}, ..., B_{0,1}] \)

Put \(C_{i,j} \in \mathbb{F}_q [A_{0,0}, A_{0,1}, A_{1,0}, A_{1,1}, B_{0,0}, B_{0,1}] \) by
\[
C_i = C_{i,0} + C_{i,1}\alpha \ (i = 0, 1, ..., 5, j = 0, 1)
\]

Then \(\deg C_{i,0} = \deg C_{i,1} = 2 \)
The cond. values \(C_i \in \mathbb{F}_q, i = 0, 1, ..., 5 \)
\[\rightarrow C_{i,1} = 0 \text{ for } i = 0, 1, ..., 5. \]
Improvement of the algorithm 6

The case \(g = 3, \ n = 2 \) part 5

1) The cond. \(C_i(a_0, ..) = 0 \in \mathbb{F}_q \) reduces to
 Eqs. sys. \(\{C_{i,1} = 0/\mathbb{F}_q | i = 0, 1, .., 5\} \)
 (degree 2, 6 vars, 6 eqs)

Let \(\vec{v} = (a_{00}, a_{01}, a_{10}, a_{11}, b_{00}, b_{11}) \in \mathbb{A}^6(\mathbb{F}_q) \) be
 a sol. of Eqs. sys.

Put \(c_i := C_{i,0}(\vec{v}) \) and \(g(x) \) is written by
 \(g(x) = x^6 + c_5 x^5 + ... + c_0 \)

2) Then \(x^6 + c_5 x^5 + ... + c_0 \) factors completely
 in \(\mathbb{F}_q[x] \) is equiv to \(x(P_1), ..., x(P_6) \in \mathbb{F}_q \)

Note. Dominant part is 1) and the computation of "Seeking decomposed factos" reduces
to "Solving Eqs. Sys."
Improvement of the algorithm 7 (general case)
Recall \(C/\mathbb{F}_{p^n} \) HyperEll. of genus \(g \), \(D_0 \in \text{Jac}_c(\mathbb{F}_{p^n}) \) fixed

Theorem Let \(V_1, V_2, \ldots, V_{(n^2-n)g} \) be variables and let \(D_0 \) be a reduced divisor of \(C/\mathbb{F}_{q^n} \). Then there are some degree 2 polynomials

\[
C_{i,j} \in \mathbb{F}_q[V_1, V_2, \ldots, V_{(n^2-n)g}] \quad (0 \leq i \leq ng - 1, 0 \leq j \leq n - 1)
\]
satisfying the following.

The condition that \(D_0 \) is decomposed is equivalent to the following 1) and 2).
1) The equations system \(S = \{ C_{i,j} = 0 \mid 0 \leq i \leq ng - 1, 1 \leq j \leq n - 1 \} \) has some solution \(\vec{v} = (v_1, \ldots, v_{(n^2-n)g}) \in \mathbb{A}^{(n^2-n)g}(\mathbb{F}_q) \).
2) Put \(c_i = C_{i,0}(v_1, \ldots, v_{(n^2-n)g}) \) for \(0 \leq i \leq ng-1 \). Then \(G(x) = x^{ng} + c_{ng-1}x^{ng-1} + \cdots + c_0 \in \mathbb{F}_q[x] \) factors completely.
Moreover, if \(D_0 \) is decomposed, the \(x \)-coordinates of the decomposed factor are the solution of \(G(x) = 0 \).
Improvement of the algorithm 7 (conclusion)
Seeking decomposed factor
→ Solving degree2, \((n^2 - n)g\) vars, eqs, equations system over \(\mathbb{F}_q\) (we assume the cost is in \(O(1)\), since \(n, g\) are small and fixed.)

Note. In Ell. cur. case, the cost of computing decomposed factor is as same as Gaudry’s method

Note. Total cost of solving DLP is \(O(\frac{q^{(2ng-2)}}{ng} + \epsilon)\)
Example We can compute the decomposed factor in three cases
1) \((g, n) = (1, 3)\), 2) \((g, n) = (2, 2)\), 3) \((g, n) = (3, 2)\)

Show an example of the case of \((g, n) = (3, 2)\)

Let \(q = 1073741789\) (prime number),
\[\mathbb{F}_q^2 := \mathbb{F}_q[t]/(t^2 + 746495860 \cdot t + 206240189),\]
\[C/\mathbb{F}_q^2 : y^2 = x^7 + (111912375 \cdot t + 1046743132) \cdot x + 6 \cdot t + 9\]
and
\[D_0 := (x^2 + 1073741787 \cdot t \cdot x + 327245929 \cdot t + 867501600,\]
\[(473621736 \cdot t + 256126568) \cdot x + 145989647 \cdot t + 687383736) \in \text{Jac}(C)\]
(Mumford representation).
We investigate whether \(nD_0 : n = 1, 2, \ldots, 3000\)
are decomposed and find the following 6 decompositions.
\[414D_0 \sim (1001437837, 752632260*t+700158497)+(747112084, 656073918*t+400137619)\]
\[+(620249588, 127943213*t+635474623)+(614180498, 206297635*t+445250468)\]
\[+(515769009, 607297126*t+554290493)+(488549466, 627952783*t+854182612)−6\infty\]
\[657D_0 \sim (939617127, 695261735*t+239531611)+(933351280, 935312661*t+961494096)\]
\[+(799612924, 341923983*t+677495100)+(294787599, 279723229*t+760003067)\]
\[+(273118782053704103*t+577497766)+(153381525, 983211238*t+517037777)−6\infty\]
\[921D_0 \sim (1034634787, 400751409*t+829801342)+(763888873, 757155774*t+829936954)\]
\[+(619620874, 800641683*t+200272230)+(603032615, 115219564*t+655011145)\]
\[+(436423191, 285214454*t+450812747)+(125198811, 884750621*t+123305741)−6\infty\]
\[1026D_0 \sim (1024020017, 267457905*t+41452942)+(794174628, 615676821*t+723336407)\]
\[+(738567269, 433647609*t+128304659)+(629287731, 465842490*t+789390318)\]
\[+(435082408, 878213106*t+603353206)+(79621979, 479459622*t+672937516)−6\infty\]
Conclusion
We have proposed an algorithm which checks whether a reduced divisor is decomposed or not, and we have computed the decomposed factors, if it is decomposed. From this algorithm, concrete computations of decomposed factors are done by computer experiments when the pairs of the genus of the hyperelliptic curve and the degree of extension field are \((1, 3), (2, 2), \) and \((3, 2)\).
Acknowledgment
The author would like to thank the program committee that gives me a chance to talk and anonymous reviewers who pointed out many mistakes and suggested a revisal plan.