ANTS-IX
Nancy, France
July 2010
The Hodge and Tate conjectures: some numerical experiments.

Henri Darmon
(joint with
Massimo Bertolini
and
Kartik Prasanna)

McGill University, Montreal

July 23, 2010
Algebraic cycles and the cycle class map

\[V = \text{smooth, projective variety over } \mathbb{C} \text{ of dimension } d. \]

\[\text{CH}^j(V) = \left\{ \begin{array}{c}
\text{Codimension } j \\
\text{algebraic cycles on } V
\end{array} \right\} \otimes \mathbb{Q} / \sim, \]

where \(\sim \) denotes rational equivalence.

The cycle class map:

\[\text{cl} : \text{CH}^j(V) \longrightarrow H^{j,j}_{dR}(V(\mathbb{C})) \cap H^{2j}_{B}(V(\mathbb{C}), \mathbb{Q}). \]

\[\langle \text{cl}(\Delta), \alpha \rangle = \int_{\Delta(\mathbb{C})} \alpha, \quad \forall \alpha \in H^{2d-2j}_{dR}(V(\mathbb{C})). \]
Algebraic cycles and the cycle class map

\(\mathcal{V} = \text{smooth, projective variety over } \mathbb{C} \text{ of dimension } d. \)

\[
\text{CH}^j(\mathcal{V}) = \left\{ \begin{array}{l}
\text{Codimension } j \\
\text{algebraic cycles on } \mathcal{V}
\end{array} \right\} \otimes \mathbb{Q} / \sim,
\]

where \(\sim \) denotes rational equivalence.

The cycle class map:

\[
\text{cl} : \text{CH}^j(\mathcal{V}) \longrightarrow H^{i,j}_{dR}(\mathcal{V}(\mathbb{C})) \cap H^{2j}_B(\mathcal{V}(\mathbb{C}), \mathbb{Q}).
\]

\[
\langle \text{cl}(\Delta), \alpha \rangle = \int_{\Delta(\mathbb{C})} \alpha, \quad \forall \alpha \in H^{2d-2j}_{dR}(\mathcal{V}(\mathbb{C})).
\]
The Hodge conjecture

Conjecture (Hodge Conjecture)

The cycle class map cl is surjective.

A cohomology class in $H^j_{dR}(V(\mathbb{C})) \cap H^j_B(V(\mathbb{C}), \mathbb{Q})$

—i.e, a class of type (j,j) with rational periods—

is called a *Hodge cycle*.

Conjecture (Hodge Conjecture, restated)

Every Hodge cycle is the class of an algebraic cycle.

Loosely stated, the Hodge conjecture asserts that the presence of algebraic cycles can be “detected” in cohomology...
Conjecture (Hodge Conjecture)

The cycle class map \(\text{cl} \) is surjective.

A cohomology class in \(H^{i,j}_{dR}(V(\mathbb{C})) \cap H^2_B(V(\mathbb{C}), \mathbb{Q}) \)

—i.e, a class of type \((j,j)\) with rational periods—

is called a \textit{Hodge cycle}.

Conjecture (Hodge Conjecture, restated)

Every Hodge cycle is the class of an algebraic cycle.

Loosely stated, the Hodge conjecture asserts that the presence of algebraic cycles can be “detected” in cohomology...
The Hodge conjecture

Conjecture (Hodge Conjecture)

The cycle class map cl *is surjective.*

A cohomology class in $H^{i,j}_{\text{dR}}(V(\mathbb{C})) \cap H^{2j}_B(V(\mathbb{C}), \mathbb{Q})$

—i.e, a class of type (j,j) with rational periods—

is called a *Hodge cycle.*

Conjecture (Hodge Conjecture, restated)

Every Hodge cycle is the class of an algebraic cycle.

Loosely stated, the Hodge conjecture asserts that the presence of algebraic cycles can be “detected” in cohomology...
The Hodge conjecture

Conjecture (Hodge Conjecture)

The cycle class map \(\text{cl} \) *is surjective.*

A cohomology class in \(H^j_{dR}(V(\mathbb{C})) \cap H^2_B(V(\mathbb{C}), \mathbb{Q}) \)

—i.e, a class of type \((j, j)\) with rational periods—

is called a *Hodge cycle.*

Conjecture (Hodge Conjecture, restated)

Every Hodge cycle is the class of an algebraic cycle.

Loosely stated, the Hodge conjecture asserts that the presence of algebraic cycles can be “detected” in cohomology...
The Tate conjecture

The cycle class map has an analogue in \(\ell \)-adic étale cohomology:

\[
cl_\ell : \text{CH}^i(V/F) \otimes \mathbb{Q}_\ell \longrightarrow H^{2j}_{\text{et}}(V_{\overline{F}}, \mathbb{Q}_\ell(j))^{G_F}.
\]

Conjecture (Tate)

The \(\ell \)-adic cycle class map is surjective.

The Hodge conjecture is known for surfaces, and for codimension one cycles, but there seems to be very little evidence for cycles of higher codimension.
The challenge

André Weil (Collected works, 1979).

La question que pose la “conjecture de Hodge” est bien naturelle... Par malheur, en dépit du mot de “conjecture”, il n’y a, que je sache, pas l’ombre d’une raison d’y croire; on rendrait service aux géomètres si l’on pouvait trancher la question au moyen d’un contre-exemple.

A challenge for the experimental mathematician:

Problem

Produce an interesting class of Hodge cycles and design a numerical experiment to probe for the presence (or absence!!) of the corresponding algebraic cycles.
The challenge

André Weil (Collected works, 1979).

La question que pose la “conjecture de Hodge” est bien naturelle... Par malheur, en dépit du mot de “conjecture”, il n’y a, que je sache, pas l’ombre d’une raison d’y croire; on rendrait service aux géomètres si l’on pouvait trancher la question au moyen d’un contre-exemple.

A challenge for the experimental mathematician:

Problem

Produce an interesting class of Hodge cycles and design a numerical experiment to probe for the presence (or absence!!) of the corresponding algebraic cycles.
CM elliptic curves

\[D \in \{7, 11, 19, 43, 67, 163\}. \]

\[K = \text{quadratic imaginary field of discriminant } -D. \]

\[(K \text{ has class number one and } \mathcal{O}_K^\times = \pm 1.) \]

\[A = \text{elliptic curve over } \mathbb{Q} \text{ of conductor } D^2 \text{ with } \text{End}_K(A) = \mathcal{O}_K. \]

\[\omega_A \in \Omega^1(A/\mathbb{Q}): \text{the Néron differential of } A. \]

\[\Lambda_A := \{ \int_\gamma \omega_A \} = \mathcal{O}_K \cdot \Omega_A. \]

\[\Omega_A \in \mathbb{C} \text{ is called the } \text{Chowla-Selberg period} \text{ attached to } A. \]
CM elliptic curves

\[D \in \{7, 11, 19, 43, 67, 163\}. \]

\[K = \text{quadratic imaginary field of discriminant } -D. \]

(K has class number one and \(\mathcal{O}_K^\times = \pm 1 \).)

\(A = \text{elliptic curve over } \mathbb{Q} \text{ of conductor } D^2 \text{ with } \text{End}_K(A) = \mathcal{O}_K. \)

\(\omega_A \in \Omega^1(A/\mathbb{Q}): \text{the Néron differential of } A. \)

\[\Lambda_A := \{ \int_\gamma \omega_A \} = \mathcal{O}_K \cdot \Omega_A. \]

\(\Omega_A \in \mathbb{C} \) is called the \textit{Chowla-Selberg period} attached to \(A. \)
CM elliptic curves

\[D \in \{7, 11, 19, 43, 67, 163\}. \]

\[K = \text{quadratic imaginary field of discriminant } -D. \]

\[(K \text{ has class number one and } \mathcal{O}_K^\times = \pm 1.) \]

\(A = \text{elliptic curve over } \mathbb{Q} \text{ of conductor } D^2 \text{ with } \text{End}_K(A) = \mathcal{O}_K. \)

\(\omega_A \in \Omega^1(A/\mathbb{Q}) : \text{the Néron differential of } A. \)

\(\Lambda_A := \left\{ \int_\gamma \omega_A \right\} = \mathcal{O}_K \cdot \Omega_A. \)

\(\Omega_A \in \mathbb{C} \text{ is called the Chowla-Selberg period attached to } A. \)
CM elliptic curves

\[D \in \{7, 11, 19, 43, 67, 163\}. \]

\[K = \text{quadratic imaginary field of discriminant } -D. \]

\[(K \text{ has class number one and } \mathcal{O}_K^\times = \pm 1.) \]

\[A = \text{elliptic curve over } \mathbb{Q} \text{ of conductor } D^2 \text{ with } \text{End}_K(A) = \mathcal{O}_K. \]

\[\omega_A \in \Omega^1(A/\mathbb{Q}) : \text{the Néron differential of } A. \]

\[\Lambda_A := \{ \int_\gamma \omega_A \} = \mathcal{O}_K \cdot \Omega_A. \]

\[\Omega_A \in \mathbb{C} \text{ is called the } \text{Chowla-Selberg period} \text{ attached to } A. \]
CM elliptic curves

\[D \in \{7, 11, 19, 43, 67, 163\}. \]

\[K = \text{quadratic imaginary field of discriminant } -D. \]

\[(K \text{ has class number one and } \mathcal{O}_K^\times = \pm 1.) \]

\[A = \text{elliptic curve over } \mathbb{Q} \text{ of conductor } D^2 \text{ with } \text{End}_K(A) = \mathcal{O}_K. \]

\[\omega_A \in \Omega^1(A/\mathbb{Q}) \text{: the Néron differential of } A. \]

\[\Lambda_A := \{ \int_\gamma \omega_A \} = \mathcal{O}_K \cdot \Omega_A. \]

\[\Omega_A \in \mathbb{C} \text{ is called the Chowla-Selberg period attached to } A. \]
CM elliptic curves

\[D \in \{7, 11, 19, 43, 67, 163\} . \]

\[K = \text{quadratic imaginary field of discriminant } -D . \]

\((K \text{ has class number one and } \mathcal{O}_{K}^\times = \pm 1.)\)

\(A = \text{elliptic curve over } \mathbb{Q} \text{ of conductor } D^2 \text{ with } \text{End}_K(A) = \mathcal{O}_K . \)

\(\omega_A \in \Omega^1(A/\mathbb{Q}) : \text{the Néron differential of } A .\)

\[\Lambda_A := \{ \int_\gamma \omega_A \} = \mathcal{O}_K \cdot \Omega_A . \]

\(\Omega_A \in \mathbb{C} \text{ is called the Chowla-Selberg period attached to } A .\)
CM elliptic curves

\[D \in \{7, 11, 19, 43, 67, 163\}. \]

\[K = \text{quadratic imaginary field of discriminant } -D. \]

(K has class number one and \(\mathcal{O}_K^\times = \pm 1. \))

\[A = \text{elliptic curve over } \mathbb{Q} \text{ of conductor } D^2 \text{ with } \text{End}_K(A) = \mathcal{O}_K. \]

\[\omega_A \in \Omega^1(A/\mathbb{Q}): \text{ the Néron differential of } A. \]

\[\Lambda_A := \{ \int_{\gamma} \omega_A \} = \mathcal{O}_K \cdot \Omega_A. \]

\(\Omega_A \in \mathbb{C} \) is called the \textit{Chowla-Selberg period} attached to \(A \).
The elliptic curve A and its Chowla-Selberg period

<table>
<thead>
<tr>
<th>D</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_6</th>
<th>Ω_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>-107</td>
<td>552</td>
<td>1.93331170...</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>-7</td>
<td>10</td>
<td>4.80242132...</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-38</td>
<td>90</td>
<td>4.19055001...</td>
</tr>
<tr>
<td>43</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-860</td>
<td>9707</td>
<td>2.89054107...</td>
</tr>
<tr>
<td>67</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-7370</td>
<td>243528</td>
<td>2.10882279...</td>
</tr>
<tr>
<td>163</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-2174420</td>
<td>1234136692</td>
<td>0.79364722...</td>
</tr>
</tbody>
</table>
The de Rham cohomology of A

Because A has CM, we can write

$$H^1_{\text{dR}}(A/K) = K \cdot \omega_A \oplus K \cdot \eta_A,$$

where

1. ω_A is the Néron differential, viewed as an element of $\Omega^1(A/K)$;

2. η_A is the generator of $H^0_{\text{dR}}(A/\mathbb{C})$ normalised so that

$$\langle \omega_A, \eta_A \rangle = \frac{1}{2\pi i} \int_{A(\mathbb{C})} \omega_A \wedge \eta_A = 1.$$

The fact that η_A is defined over K is specific to the CM setting.
The de Rham cohomology of A

Because A has CM, we can write

$$H^1_{dR}(A/K) = K \cdot \omega_A \oplus K \cdot \eta_A,$$

where

1. ω_A is the Néron differential, viewed as an element of $\Omega^1(A/K)$;
2. η_A is the generator of $H^{0,1}_{dR}(A/\mathbb{C})$ normalised so that

$$\langle \omega_A, \eta_A \rangle = \frac{1}{2\pi i} \int_{A(\mathbb{C})} \omega_A \wedge \eta_A = 1.$$

The fact that η_A is defined over K is specific to the CM setting.
The de Rham cohomology of A

Because A has CM, we can write

$$H^1_{dR}(A/K) = K \cdot \omega_A \oplus K \cdot \eta_A,$$

where

1. ω_A is the Néron differential, viewed as an element of $\Omega^1(A/K)$;
2. η_A is the generator of $H^{0,1}_{dR}(A/\mathbb{C})$ normalised so that

$$\langle \omega_A, \eta_A \rangle = \frac{1}{2\pi i} \int_{A(\mathbb{C})} \omega_A \wedge \eta_A = 1.$$

The fact that η_A is defined over K is specific to the CM setting.
The Hecke character attached to A

Theorem (Deuring)

There is a Hecke character ψ_A of K of infinity type $(1, 0)$ and conductor $\sqrt{-D}$ satisfying $L(A, s) = L(\psi_A, s)$.

More precisely, for all $a \in \mathcal{O}_K$,

$$\psi_A((a)) = \left(\frac{a}{\sqrt{-D}} \right) a.$$
The Hecke character attached to A

Theorem (Deuring)

There is a Hecke character ψ_A of K of infinity type $(1, 0)$ and conductor $\sqrt{-D}$ satisfying $L(A, s) = L(\psi_A, s)$.

More precisely, for all $a \in \mathcal{O}_K$,

$$\psi_A((a)) = \left(\frac{a}{\sqrt{-D}} \right) a.$$
Fix an integer $r \geq 0$, and let $\psi = \psi_A^{r+1}$.

The character ψ is of infinity type $(r + 1, 0)$.

\[
\text{conductor}(\psi) = \begin{cases}
(\sqrt{-D}) & \text{if } r \text{ is even;} \\
1 & \text{if } r \text{ is odd.}
\end{cases}
\]

\[
\theta_\psi = \frac{1}{2} \sum_{a \in \mathcal{O}_K} \psi(a) q^{a \bar{a}} \in \begin{cases}
S_{r+2}(\Gamma_0(D^2)) & \text{if } r \text{ is even;} \\
S_{r+2}(\Gamma_0(D), \varepsilon_D) & \text{if } r \text{ is odd.}
\end{cases}
\]
Fix an integer $r \geq 0$, and let $\psi = \psi_A^{r+1}$.

The character ψ is of infinity type $(r + 1, 0)$.

$$\text{conductor}(\psi) = \begin{cases} \sqrt{-D} & \text{if } r \text{ is even;} \\ 1 & \text{if } r \text{ is odd.} \end{cases}$$

$$\theta_{\psi} = \frac{1}{2} \sum_{a \in O_K} \psi(a) q^{a \bar{a}} \in \begin{cases} S_{r+2}(\Gamma_0(D^2)) & \text{if } r \text{ is even;} \\ S_{r+2}(\Gamma_0(D), \varepsilon_D) & \text{if } r \text{ is odd.} \end{cases}$$
Hecke characters of higher weight and theta series

Fix an integer $r \geq 0$, and let $\psi = \psi_A^{r+1}$.

The character ψ is of infinity type $(r+1,0)$.

$$\text{conductor}(\psi) = \begin{cases} \sqrt{-D} & \text{if } r \text{ is even;} \\ 1 & \text{if } r \text{ is odd.} \end{cases}$$

$$\theta_\psi = \frac{1}{2} \sum_{a \in \mathcal{O}_K} \psi(a) q^{a \bar{a}} \in \begin{cases} S_{r+2}(\Gamma_0(D^2)) & \text{if } r \text{ is even;} \\ S_{r+2}(\Gamma_0(D), \varepsilon_D) & \text{if } r \text{ is odd.} \end{cases}$$
Kuga-Sato varieties

Modular forms in $S_{r+2}(\Gamma)$ give rise to cohomology classes on certain Kuga-Sato varieties.

Modular curve:

$$C = \begin{cases}
Y_0(D^2) & \text{if } r \text{ is even;} \\
Y_0(D) & \text{if } r \text{ is odd.}
\end{cases}$$

$W'_r = r$-fold fiber product of the “universal” elliptic curve over C.

The open variety W'_r admits a smooth compactification, called the Kuga-Sato variety attached to (C, r), and denoted W_r.
Kuga-Sato varieties

Modular forms in $S_{r+2}(\Gamma)$ give rise to cohomology classes on certain Kuga-Sato varieties.

Modular curve:

$$C = \begin{cases}
Y_0(D^2) & \text{if } r \text{ is even;} \\
Y_0(D) & \text{if } r \text{ is odd.}
\end{cases}$$

$W'_r = r$-fold fiber product of the “universal” elliptic curve over C.

The open variety W'_r admits a smooth compactification, called the Kuga-Sato variety attached to (C, r), and denoted W_r.
Kuga-Sato varieties

Modular forms in $S_{r+2}(\Gamma)$ give rise to cohomology classes on certain Kuga-Sato varieties.

Modular curve:

$$C = \begin{cases}
Y_0(D^2) & \text{if } r \text{ is even;} \\
Y_0(D) & \text{if } r \text{ is odd.}
\end{cases}$$

$W'_r = r$-fold fiber product of the “universal” elliptic curve over C.

The open variety W'_r admits a smooth compactification, called the Kuga-Sato variety attached to (C, r), and denoted W_r.
Kuga-Sato varieties

Modular forms in $S_{r+2}(\Gamma)$ give rise to cohomology classes on
certain Kuga-Sato varieties.

Modular curve:

$$C = \begin{cases}
Y_0(D^2) & \text{if } r \text{ is even}; \\
Y_0(D) & \text{if } r \text{ is odd}.
\end{cases}$$

$W'_r = r$-fold fiber product of the “universal” elliptic curve over C.

The open variety W'_r admits a smooth compactification, called the
Kuga-Sato variety attached to (C, r), and denoted W_r.
Let

\[\Gamma = \begin{cases}
\Gamma_0(D^2) & \text{if } r \text{ is even;} \\
\Gamma_0(D) & \text{if } r \text{ is odd,}
\end{cases} \]

so that \(C(\mathbb{C}) = \mathcal{H}/\Gamma \). Then

\[W_r'(\mathbb{C}) = (\mathbb{Z}^{2r} \rtimes \Gamma) \backslash (\mathbb{C}^r \times \mathcal{H}), \]

where

\[(m_1, n_1, \ldots, m_r, n_r)(w_1, \ldots, w_r, \tau) = (w_1+m_1+n_1\tau, \ldots, w_r+m_r+n_r\tau, \tau), \]

\[\begin{pmatrix} a & b \\
c & d \end{pmatrix} (w_1, \ldots, w_r, \tau) = \left(\frac{w_1}{c\tau + d}, \ldots, \frac{w_r}{c\tau + d}, \frac{a\tau + b}{c\tau + d} \right). \]
Let

$$\Gamma = \begin{cases}
\Gamma_0(D^2) & \text{if } r \text{ is even;} \\
\Gamma_0(D) & \text{if } r \text{ is odd},
\end{cases}$$

so that $C(\mathbb{C}) = \mathcal{H}/\Gamma$. Then

$$W'_r(\mathbb{C}) = (\mathbb{Z}^{2r} \rtimes \Gamma) \setminus (\mathbb{C}^r \times \mathcal{H}),$$

where

$$(m_1, n_1, \ldots, m_r, n_r)(w_1, \ldots, w_r, \tau) = (w_1+m_1+n_1\tau, \ldots, w_r+m_r+n_r\tau, \tau),$$

$$\begin{pmatrix} a & b \\
c & d \end{pmatrix} (w_1, \ldots, w_r, \tau) = \left(\frac{w_1}{c\tau+d}, \ldots, \frac{w_r}{c\tau+d}, \frac{a\tau+b}{c\tau+d} \right).$$
Let

\[\Gamma = \begin{cases} \Gamma_0(D^2) & \text{if } r \text{ is even;} \\ \Gamma_0(D) & \text{if } r \text{ is odd,} \end{cases} \]

so that \(C(\mathbb{C}) = \mathcal{H}/\Gamma \). Then

\[W'_r(\mathbb{C}) = (\mathbb{Z}^{2r} \rtimes \Gamma) \backslash (\mathbb{C}^r \times \mathcal{H}), \]

where

\[(m_1, n_1, \ldots, m_r, n_r)(w_1, \ldots, w_r, \tau) = (w_1+m_1+n_1\tau, \ldots, w_r+m_r+n_r\tau, \tau),\]

and

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix}(w_1, \ldots, w_r, \tau) = \left(\frac{w_1}{c\tau + d}, \ldots, \frac{w_r}{c\tau + d}, \frac{a\tau + b}{c\tau + d} \right).
\]
Let
\[\Gamma = \begin{cases}
\Gamma_0(D^2) & \text{if } r \text{ is even;} \\
\Gamma_0(D) & \text{if } r \text{ is odd},
\end{cases} \]
so that \(C(\mathbb{C}) = \mathcal{H}/\Gamma. \) Then
\[W'_r(\mathbb{C}) = (\mathbb{Z}^{2r} \rtimes \Gamma) \setminus (\mathbb{C}^r \times \mathcal{H}), \]
where
\[
(m_1, n_1, \ldots, m_r, n_r)(w_1, \ldots, w_r, \tau) = (w_1+m_1+n_1\tau, \ldots, w_r+m_r+n_r\tau, \tau),
\]
\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} (w_1, \ldots, w_r, \tau) = \left(\frac{w_1}{c\tau + d}, \ldots, \frac{w_r}{c\tau + d}, \frac{a\tau + b}{c\tau + d} \right).
\]
The de Rham cohomology of Kuga-Sato varieties

The holomorphic \((r + 1)\)-form on \(\mathbb{C}^r \times \mathcal{H}\)

\[\omega_{\theta, \psi} = (2\pi i)^{r+1} \theta_{\psi}(\tau) dw_1 \cdots dw_r d\tau \]

is invariant under \(\mathbb{Z}^{2r} \rtimes \Gamma\), and hence corresponds to a regular \((r + 1)\)-form in \(\Omega^{r+1}(W'_r/\mathbb{C})\).

It extends to \(W_r\) (cuspidality) and is defined over \(\mathbb{Q}\) (\(q\)-expansion principle.)

Let \([\omega_{\omega, \psi}]\) denote its class in \(H^{r+1,0}_{dR}(W_r/\mathbb{Q})\).
The de Rham cohomology of Kuga-Sato varieties

The holomorphic \((r + 1)\)-form on \(\mathbb{C}^r \times \mathcal{H}\)

\[
\omega_{\theta, \psi} = (2\pi i)^{r+1}\theta_{\psi}(\tau)dw_1 \cdots dw_r d\tau
\]

is invariant under \(\mathbb{Z}^{2r} \rtimes \Gamma\), and hence corresponds to a regular \((r + 1)\)-form in \(\Omega^{r+1}(W'_r/\mathbb{C})\).

It extends to \(W_r\) (cuspidality) and is defined over \(\mathbb{Q}\) (\(q\)-expansion principle.)

Let \([\omega_{\omega, \psi}]\) denote its class in \(H^{r+1,0}_{dR}(W_r/\mathbb{Q})\).
The de Rham cohomology of Kuga-Sato varieties

The holomorphic \((r + 1) \)-form on \(\mathbb{C}^r \times \mathcal{H} \)

\[
\omega_{\theta, \psi} = (2\pi i)^{r+1} \theta_{\psi}(\tau) dw_1 \cdots dw_r d\tau
\]
is invariant under \(\mathbb{Z}^{2r} \rtimes \Gamma \), and hence corresponds to a regular \((r + 1) \)-form in \(\Omega^{r+1}(W'_r/\mathbb{C}) \).

It extends to \(W_r \) (cuspidality) and is defined over \(\mathbb{Q} \) (\(q \)-expansion principle.)

Let \([\omega_{\omega, \psi}]\) denote its class in \(H^{r+1,0}_{dR}(W_r/\mathbb{Q}) \).
A family of Hodge cycles

The ambient variety: \(V_r := W_r \times A^{r+1} \), (of dimension \(2r + 2 \)).

Proposition

The class \(\Phi_{\text{Hodge}} := \omega_{\theta, \psi} \wedge \eta_A^{r+1} \) is a Hodge cycle in \(H^{2r+2}_{dR}(V_r/\mathbb{C}) \).

This result is “consistent” with the \(\ell \)-adic picture:

- The \(\ell \)-adic representation \(V_{\theta, \psi} \) of \(G_{\mathbb{Q}} \) attached to the modular form \(\theta, \psi \) is a constituent of \(H^{r+1}_{et}(W_r/\overline{\mathbb{Q}}, \mathbb{Q}_\ell) \).
- The representation \(V_{\theta, \psi} \) is also isomorphic to \(\text{Ind}_{K}^{\mathbb{Q}} \psi_A^{r+1} \subset H^{r+1}_{et}(A^{r+1}_{/\overline{\mathbb{Q}}}, \mathbb{Q}_\ell) \).

These isomorphisms yield a non-trivial Tate cycle in \(H^{2r+2}_{et}(V_r/\overline{\mathbb{Q}}, \mathbb{Q}_\ell)(r + 1)^{G_{\mathbb{Q}}} \).
A family of Hodge cycles

The ambient variety: $V_r := W_r \times A^{r+1}$, (of dimension $2r + 2$).

Proposition

The class $\Phi_{\text{Hodge}} := \omega_{\theta, \psi} \wedge \eta_{A}^{r+1}$ is a Hodge cycle in $H^{2r+2}_{dR}(V_r/\mathbb{C})$.

This result is “consistent” with the ℓ-adic picture:

- The ℓ-adic representation $V_{\theta, \psi}$ of $G_{\mathbb{Q}}$ attached to the modular form $\theta \psi$ is a constituent of $H^{r+1}_{\text{et}}(W_r/\bar{\mathbb{Q}}, \mathbb{Q}_\ell)$.
- The representation $V_{\theta, \psi}$ is also isomorphic to $\text{Ind}_{K}^{\mathbb{Q}} \psi_{A}^{r+1} \subset H^{r+1}_{\text{et}}(A_{/\bar{\mathbb{Q}}}^{r+1}, \mathbb{Q}_\ell)$.

- These isomorphisms yield a non-trivial Tate cycle in $H^{2r+2}_{\text{et}}(V_r/\bar{\mathbb{Q}}, \mathbb{Q}_\ell)(r + 1)^{G_{\mathbb{Q}}}$.
A family of Hodge cycles

The ambient variety: $V_r := W_r \times A^{r+1}$, (of dimension $2r + 2$).

Proposition

The class $\Phi_{\text{Hodge}} := \omega_{\theta_\psi} \wedge \eta_{A}^{r+1}$ is a Hodge cycle in $H^{2r+2}_{dR}(V_r/\mathbb{C})$.

This result is “consistent” with the ℓ-adic picture:

- The ℓ-adic representation V_{θ_ψ} of $G_\mathbb{Q}$ attached to the modular form θ_ψ is a constituent of $H^{r+1}_{et}(W_r/\overline{\mathbb{Q}}, \mathbb{Q}_\ell)$.
- The representation V_{θ_ψ} is also isomorphic to $\text{Ind}_{K}^{Q} \psi_{A}^{r+1} \subset H^{r+1}_{et}(A_{/\overline{\mathbb{Q}}}^{r+1}, \mathbb{Q}_\ell)$.

These isomorphisms yield a non-trivial Tate cycle in $H^{2r+2}_{et}(V_r/\overline{\mathbb{Q}}, \mathbb{Q}_\ell)(r + 1)^{G_\mathbb{Q}}$.
A family of Hodge cycles

The ambient variety: \(V_r := \mathcal{W}_r \times A^{r+1}, \) (of dimension \(2r + 2 \)).

Proposition

The class \(\Phi_{\text{Hodge}} := \omega_{\theta_{\psi}} \wedge \eta^{r+1}_A \) is a Hodge cycle in \(H^{2r+2}_{dR}(V_r/\mathbb{C}) \).

This result is “consistent” with the \(\ell \)-adic picture:

- The \(\ell \)-adic representation \(V_{\theta_{\psi}} \) of \(G_{\mathbb{Q}} \) attached to the modular form \(\theta_{\psi} \) is a constituent of \(H^{r+1}_{\text{et}}(\mathcal{W}_r/\bar{\mathbb{Q}}, \mathbb{Q}_\ell) \).
- The representation \(V_{\theta_{\psi}} \) is also isomorphic to

 \[
 \text{Ind}_{K}^{\mathbb{Q}} \psi^{r+1}_A \subset H^{r+1}_{\text{et}}(A^{r+1}_{/\bar{\mathbb{Q}}}, \mathbb{Q}_\ell).
 \]

- These isomorphisms yield a non-trivial Tate cycle in

 \[
 H^{2r+2}_{\text{et}}(V_r/\bar{\mathbb{Q}}, \mathbb{Q}_\ell)(r + 1)^{G_{\mathbb{Q}}}. \]
A family of Hodge cycles

The ambient variety: $V_r := W_r \times A^{r+1}$, (of dimension $2r + 2$).

Proposition

The class $\Phi_{\text{Hodge}} := \omega_{\theta_{\psi}} \wedge \eta_{A}^{r+1}$ is a Hodge cycle in $H_{dR}^{2r+2}(V_r/\mathbb{C})$.

This result is “consistent” with the ℓ-adic picture:

- The ℓ-adic representation $V_{\theta_{\psi}}$ of $G_{\mathbb{Q}}$ attached to the modular form θ_{ψ} is a constituent of $H_{\text{et}}^{r+1}(W_r/\bar{\mathbb{Q}}, \mathbb{Q}_\ell)$.
- The representation $V_{\theta_{\psi}}$ is also isomorphic to $\text{Ind}^{\mathbb{Q}}_{K} \psi_{A}^{r+1} \subset H_{\text{et}}^{r+1}(A^{r+1}/\bar{\mathbb{Q}}, \mathbb{Q}_\ell)$.

- These isomorphisms yield a non-trivial Tate cycle in $H_{\text{et}}^{2r+2}(V_r/\bar{\mathbb{Q}}, \mathbb{Q}_\ell)(r + 1)^{G_{\mathbb{Q}}}$.
A special case of the Hodge conjecture

Question

Given D and $r \geq 0$, produce an algebraic cycle

\[\Phi \subset V_r = W_r \times A^{r+1} \]

such that \(\text{cl}(\Phi) = \Phi_{\text{Hodge}} \)

...or show that no such cycle exists!

The Tate conjecture suggests that the cycle class Φ can be defined over K. (Or even, with some care, over \mathbb{Q}...)
Some examples

- $r = 0$. Then, $V_r = C \times A$. The cycle Φ is the graph of a modular parametrisation $X_0(D^2) \to A$.

- $r = 1, D = 7$. The Kuga-Sato variety W_1 is an elliptic K3-surface with maximal Picard rank 20.

 Shioda-Inose: there exists an involution ι on W_1, such that

 $$W_1/\iota = \text{Kummer}(B) = B/\pm 1, \text{ with } B \sim A \times A.$$

 The desired cycle can be built from the image of

 $$W_1 \times_{W_1/\iota} B \quad \text{in} \quad W_1 \times A^2.$$

 An explicit equation (over \mathbb{Q}) for the Shioda-Inose structure in this case has been computed by Elkies...

- These are the only cases for which the algebraic cycle has been produced! $D = 163, r = 15$???
Some examples

- \(r = 0 \). Then, \(V_r = C \times A \). The cycle \(\Phi \) is the graph of a modular parametrisation \(X_0(D^2) \rightarrow A \).

- \(r = 1, D = 7 \). The Kuga-Sato variety \(W_1 \) is an elliptic K3-surface with maximal Picard rank 20.

Shioda-Inose: there exists an involution \(\iota \) on \(W_1 \), such that

\[
W_1/\iota = \text{Kummer}(B) = B/\pm 1, \quad \text{with } B \sim A \times A.
\]

The desired cycle can be built from the image of

\[
W_1 \times_{W_1/\iota} B \quad \text{in} \quad W_1 \times A^2.
\]

An explicit equation (over \(\mathbb{Q} \)) for the Shioda-Inose structure in this case has been computed by Elkies...

- These are the only cases for which the algebraic cycle has been produced! \(D = 163, r = 15 \) ??
Some examples

- $r = 0$. Then, $V_r = C \times A$. The cycle Φ is the graph of a modular parametrisation $X_0(D^2) \longrightarrow A$.

- $r = 1, D = 7$. The Kuga-Sato variety W_1 is an elliptic K3-surface with maximal Picard rank 20.

 Shioda-Inose: there exists an involution ι on W_1, such that

 $$W_1 / \iota = Kummer(B) = B / \pm 1, \quad \text{with } B \sim A \times A.$$

 The desired cycle can be built from the image of

 $$W_1 \times_{W_1 / \iota} B \quad \text{in} \quad W_1 \times A^2.$$

 An explicit equation (over \mathbb{Q}) for the Shioda-Inose structure in this case has been computed by Elkies...

- These are the only cases for which the algebraic cycle has been produced! $D = 163, r = 15$???
Some examples

- $r = 0$. Then, $V_r = C \times A$. The cycle Φ is the graph of a modular parametrisation $X_0(D^2) \rightarrow A$.

- $r = 1, D = 7$. The Kuga-Sato variety W_1 is an elliptic K3-surface with maximal Picard rank 20. **Shioda-Inose**: there exists an involution ι on W_1, such that

$$W_1/\iota = \text{Kummer}(B) = B/\pm 1,$$

with $B \sim A \times A$.

The desired cycle can be built from the image of

$$W_1 \times_{W_1/\iota} B \quad \text{in} \quad W_1 \times A^2.$$

An explicit equation (over \mathbb{Q}) for the Shioda-Inose structure in this case has been computed by Elkies...

These are the only cases for which the algebraic cycle has been produced! $D = 163, r = 15$??
Some examples

- $r = 0$. Then, $V_r = C \times A$. The cycle Φ is the graph of a modular parametrisation $X_0(D^2) \rightarrow A$.

- $r = 1$, $D = 7$. The Kuga-Sato variety W_1 is an elliptic K3-surface with maximal Picard rank 20.

Shioda-Inose: there exists an involution ι on W_1, such that

\[W_1/\iota = \text{Kummer}(B) = B/\pm 1, \quad \text{with } B \sim A \times A. \]

The desired cycle can be built from the image of

\[W_1 \times_{W_1/\iota} B \quad \text{in} \quad W_1 \times A^2. \]

An explicit equation (over \mathbb{Q}) for the Shioda-Inose structure in this case has been computed by Elkies...

- These are the only cases for which the algebraic cycle has been produced! $D = 163$, $r = 15$???
Let $X_r = W_r \times A^r$, and let

$$\text{CH}^{r+1}(X_r)_0 \subset \text{CH}^{r+1}(X_r)$$

denote the subgroup of classes of null-homologous cycles.

Key Remark: The conjectural algebraic cycle

$$\Phi \subset V_r = W_r \times A^{r+1} = X_r \times A$$

gives rise to an *exotic modular parametrisation*

$$\Phi : \text{CH}^{r+1}(X_r)_0 \longrightarrow \text{CH}^1(A)_0 = A,$$

which converts null-homologous algebraic cycles into rational points on A and respects fields of definition.
Let $X_r = W_r \times A^r$, and let

$$\text{CH}^{r+1}(X_r)_0 \subset \text{CH}^{r+1}(X_r)$$

denote the subgroup of classes of null-homologous cycles.

Key Remark: The conjectural algebraic cycle

$$\Phi \subset V_r = W_r \times A^{r+1} = X_r \times A$$

gives rise to an *exotic modular parametrisation*

$$\Phi : \text{CH}^{r+1}(X_r)_0 \longrightarrow \text{CH}^1(A)_0 = A,$$

which converts null-homologous algebraic cycles into rational points on A and respects fields of definition.
Definition of Φ

1. Let $\pi_A : X_r \times A \to A$, $\pi_X : X_r \times A \to X_r$ be the natural projections to each factor.

2. If $\Delta \in \text{CH}^{r+1}(X_r)$, then

$$\dim(\pi_X^{-1}(\Delta)) = \dim(\Phi) = r + 1 = \frac{1}{2} \dim V_r;$$

3. Therefore $\pi_X^{-1}(\Delta) \cdot \Phi$ (if the intersection is transversal...) is 0-dimensional, and

$$\Phi(\Delta) := \pi_A(\pi_X^{-1}(\Delta) \cdot \Phi) \in A$$

is well-defined.
Definition of Φ

1. Let $\pi_A : X_r \times A \to A$, $\pi_X : X_r \times A \to X_r$ be the natural projections to each factor.

2. If $\Delta \in \text{CH}^{r+1}(X_r)$, then

$$\dim(\pi_X^{-1}(\Delta)) = \dim(\Phi) = r + 1 = \frac{1}{2} \dim V_r;$$

3. Therefore $\pi_X^{-1}(\Delta) \cdot \Phi$ (if the intersection is transversal...) is 0-dimensional, and

$$\Phi(\Delta) := \pi_A(\pi_X^{-1}(\Delta) \cdot \Phi) \in A$$

is well-defined.
Definition of Φ

1. Let $\pi_A : X_r \times A \rightarrow A$, $\pi_X : X_r \times A \rightarrow X_r$ be the natural projections to each factor.

2. If $\Delta \in \text{CH}^{r+1}(X_r)$, then

\[\dim(\pi_X^{-1}(\Delta)) = \dim(\Phi) = r + 1 = \frac{1}{2} \dim V_r; \]

3. Therefore $\pi_X^{-1}(\Delta) \cdot \Phi$ (if the intersection is transversal...) is 0-dimensional, and

\[\Phi(\Delta) := \pi_A(\pi_X^{-1}(\Delta) \cdot \Phi) \in A \]

is well-defined.
The group $\text{CH}^{r+1}(X_r)_0(\bar{\mathbb{Q}})$ is infinitely generated.

Proof.

$\text{CH}^{r+1}(X_r)_0$ contains an infinite collection of explicit null-homologous cycles: the generalised Heegner cycles. C. Schoen: they generate a subgroup of infinite rank.

Generalised Heeger cycles: Indexed by $\varphi : A \rightarrow A'$.

$\Delta'_{\varphi,r} := \text{graph}(\varphi)^r \subset (A \times A')^r = (A')^r \times A^r \subset W_r \times A^r = X_r.$

$\Delta_{\varphi,r} := \varepsilon \Delta'_{\varphi,r}$,

where ε is a simple projector that makes $\Delta_{\varphi,r}$ null-homologous.
Test cycles

Proposition

The group $\text{CH}^{r+1}(X_r)_0(\mathbb{Q})$ *is infinitely generated.*

Proof.

$\text{CH}^{r+1}(X_r)_0$ *contains an infinite collection of explicit null-homologous cycles: the generalised Heegner cycles.* $\text{C. Schoen}:$ they generate a subgroup of infinite rank.

Generalised Heegner cycles: Indexed by $\varphi : A \rightarrow A'.$

\[\Delta'_{\varphi,r} := \text{graph}(\varphi)^r \subset (A \times A')^r = (A')^r \times A^r \subset W_r \times A^r = X_r. \]

\[\Delta_{\varphi,r} := \varepsilon \Delta'_{\varphi,r}, \]

where ε is a simple projector that makes $\Delta_{\varphi,r}$ null-homologous.
Test cycles

Proposition

The group $\text{CH}^{r+1}(X_r)_0(\bar{\mathbb{Q}})$ is infinitely generated.

Proof.

$\text{CH}^{r+1}(X_r)_0$ contains an infinite collection of explicit null-homologous cycles: the generalised Heegner cycles. C. Schoen: they generate a subgroup of infinite rank.

Generalised Heegger cycles: Indexed by $\varphi: A \longrightarrow A'$.

$$\Delta'_{\varphi,r} := \text{graph}(\varphi)^r \subset (A \times A')^r = (A')^r \times A^r \subset W_r \times A^r = X_r.$$

$$\Delta_{\varphi,r} := \varepsilon \Delta'_{\varphi,r},$$

where ε is a simple projector that makes $\Delta_{\varphi,r}$ null-homologous.
Test cycles

Proposition

The group \(\text{CH}^{r+1}(X_r)_0(\bar{\mathbb{Q}}) \) is infinitely generated.

Proof.

\(\text{CH}^{r+1}(X_r)_0 \) contains an infinite collection of explicit null-homologous cycles: the *generalised Heegner cycles*. C. Schoen: they generate a subgroup of infinite rank.

Generalised Heeger cycles: Indexed by \(\varphi : A \rightarrow A' \).

\[
\Delta'_{\varphi,r} := \text{graph}(\varphi)^r \subset (A \times A')^r = (A')^r \times A^r \subset W_r \times A^r = X_r.
\]

\[
\Delta_{\varphi,r} := \varepsilon \Delta'_{\varphi,r},
\]

where \(\varepsilon \) is a simple projector that makes \(\Delta_{\varphi,r} \) null-homologous.
Test cycles

Proposition

The group $\text{CH}^{r+1}(X_r)_0(\bar{\mathbb{Q}})$ is infinitely generated.

Proof.

$\text{CH}^{r+1}(X_r)_0$ contains an infinite collection of explicit null-homologous cycles: the generalised Heegner cycles. C. Schoen: they generate a subgroup of infinite rank.

Generalised Heeger cycles: Indexed by $\varphi : A \rightarrow A'$.

\[\Delta'_{\varphi,r} := \text{graph}(\varphi)^r \subset (A \times A')^r = (A')^r \times A^r \subset W_r \times A^r = X_r. \]

\[\Delta_{\varphi,r} := \varepsilon \Delta'_{\varphi,r}, \]

where ε is a simple projector that makes $\Delta_{\varphi,r}$ null-homologous.
The conjecture on generalised Heegner cycles

The cycle $\Delta_{\varphi,r}$ is defined over a ring class field H_{φ} attached to φ.

Proposition

If the cycle Φ exists, then $\{\Phi(\Delta_{\varphi,r})\}_{\varphi}$ *generates an infinite rank subgroup of* $A(K^{ab})$.
In particular, $\Phi(\Delta_{1,r})$ *belongs to* $A(K)$.

The points $\Phi(\Delta_{\varphi,r})$ are called *Chow-Heegner points*.

Some problems:

1. Calculate Chow Heegner points numerically *without* calculating the algebraic cycle Φ beforehand.
2. Describe the exact position of $\Phi(\Delta_{1,r})$ in $A(K)$ as $r \geq 0$ varies.
The conjecture on generalised Heegner cycles

The cycle $\Delta_{\varphi,r}$ is defined over a ring class field H_{φ} attached to φ.

Proposition

If the cycle Φ exists, then $\{\Phi(\Delta_{\varphi,r})\}_{\varphi}$ generates an infinite rank subgroup of $A(K^{ab})$. In particular, $\Phi(\Delta_{1,r})$ belongs to $A(K)$.

The points $\Phi(\Delta_{\varphi,r})$ are called *Chow-Heegner points*.

Some problems:

1. Calculate Chow Heegner points numerically *without* calculating the algebraic cycle Φ beforehand.

2. Describe the exact position of $\Phi(\Delta_{1,r})$ in $A(K)$ as $r \geq 0$ varies.
The conjecture on generalised Heegner cycles

The cycle $\Delta_{\varphi,r}$ is defined over a ring class field H_φ attached to φ.

Proposition

If the cycle Φ exists, then $\{\Phi(\Delta_{\varphi,r})\}_\varphi$ generates an infinite rank subgroup of $A(K^{ab})$. In particular, $\Phi(\Delta_{1,r})$ belongs to $A(K)$.

The points $\Phi(\Delta_{\varphi,r})$ are called *Chow-Heegner points*.

Some problems:

1. Calculate Chow Heegner points numerically *without* calculating the algebraic cycle Φ beforehand.

2. Describe the exact position of $\Phi(\Delta_{1,r})$ in $A(K)$ as $r \geq 0$ varies.
The conjecture on generalised Heegner cycles

The cycle $\Delta_{\varphi,r}$ is defined over a ring class field H_{φ} attached to φ.

Proposition

If the cycle Φ exists, then $\{\Phi(\Delta_{\varphi,r})\}_{\varphi}$ generates an infinite rank subgroup of $A(K^{ab})$.

In particular, $\Phi(\Delta_{1,r})$ belongs to $A(K)$.

The points $\Phi(\Delta_{\varphi,r})$ are called Chow-Heegner points.

Some problems:

1. Calculate Chow Heegner points numerically without calculating the algebraic cycle Φ beforehand.

2. Describe the exact position of $\Phi(\Delta_{1,r})$ in $A(K)$ as $r \geq 0$ varies.
Complex Abel-Jacobi maps

Recall the classical Abel-Jacobi map:

\[\text{AJ}_A : \text{CH}^1(A(\mathbb{C}))_0 = A(\mathbb{C}) \longrightarrow \frac{\Omega^1(A/\mathbb{C})^\vee}{H_1(A(\mathbb{C}), \mathbb{Z})} = \mathbb{C}/\Lambda_A, \]

given by

\[\text{AJ}_A(\Delta)(\omega) := \int_{\partial^{-1}(\Delta)} \omega. \]

(If \(\Delta = P - Q \), then \(\partial^{-1}(\Delta) \) is any path from \(Q \) to \(P \).)

Higher-dimensional analogue (Griffiths-Weil):

\[\text{AJ}_{X_r} : \text{CH}^{r+1}(X_r)_0(\mathbb{C}) \longrightarrow \frac{\text{Fil}^{r+1} H_{dR}^{2r+1}(X_r/\mathbb{C})^\vee}{H_{2r+1}(X_r(\mathbb{C}), \mathbb{Z})}. \]

It is defined by the rule:

\[\text{AJ}_A(\Delta)(\omega) := \int_{\partial^{-1}(\Delta)} \omega. \quad (\text{dim}(\partial^{-1}(\Delta) = 2r + 1). \]
Complex Abel-Jacobi maps

Recall the classical Abel-Jacobi map:

\[\text{AJ}_A : \text{CH}^1(A(\mathbb{C}))_0 = A(\mathbb{C}) \to \frac{\Omega^1(A/\mathbb{C})^\vee}{H_1(A(\mathbb{C}), \mathbb{Z})} = \mathbb{C}/\Lambda_A, \]

given by

\[\text{AJ}_A(\Delta)(\omega) := \int_{\partial^{-1}(\Delta)} \omega. \]

(If \(\Delta = P - Q \), then \(\partial^{-1}(\Delta) \) is any path from \(Q \) to \(P \).)

Higher-dimensional analogue (Griffiths-Weil):

\[\text{AJ}_{X_r} : \text{CH}^{r+1}(X_r)_0(\mathbb{C}) \to \frac{\text{Fil}^{r+1}H^{2r+1}_{dR}(X_r/\mathbb{C})^\vee}{H_{2r+1}(X_r(\mathbb{C}), \mathbb{Z})}. \]

It is defined by the rule:

\[\text{AJ}_A(\Delta)(\omega) := \int_{\partial^{-1}(\Delta)} \omega. \quad (\dim(\partial^{-1}(\Delta) = 2r + 1). \]
Complex Abel-Jacobi maps

Recall the classical Abel-Jacobi map:

\[\text{AJ}_A : \text{CH}^1(A(\mathbb{C}))_0 = A(\mathbb{C}) \longrightarrow \frac{\Omega^1(A/\mathbb{C})^\vee}{H_1(A(\mathbb{C}), \mathbb{Z})} = \mathbb{C}/\Lambda_A, \]

given by

\[\text{AJ}_A(\Delta)(\omega) := \int_{\partial^{-1}(\Delta)} \omega. \]

(If \(\Delta = P - Q \), then \(\partial^{-1}(\Delta) \) is any path from \(Q \) to \(P \).)

Higher-dimensional analogue (Griffiths-Weil):

\[\text{AJ}_{X_r} : \text{CH}^{r+1}(X_r)_0(\mathbb{C}) \longrightarrow \frac{\text{Fil}^{r+1} H_{dR}^{2r+1}(X_r/\mathbb{C})^\vee}{H_{2r+1}(X_r(\mathbb{C}), \mathbb{Z})}. \]

It is defined by the rule:

\[\text{AJ}_A(\Delta)(\omega) := \int_{\partial^{-1}(\Delta)} \omega. \quad (\text{dim}(\partial^{-1}(\Delta) = 2r + 1)). \]
Calculating Φ numerically

Theorem

If Φ exists, then

$$AJ_A(\Phi(\Delta_\varphi,r))(\omega_A) = AJ_{X_r}(\Delta_\varphi,r)(\omega_{\theta_\psi} \wedge \eta^r_A).$$

Proof.

Functoriality of Abel-Jacobi maps under correspondences:

$$AJ_A(\Phi(\Delta_\varphi,r))(\omega_A) = AJ_{X_r}(\Delta_\varphi,r)(\Phi^* \omega_A),$$

where

$$\Phi^* : H^1_{dR}(A) \longrightarrow H^{2r+1}_{dR}(X_r)$$

is the map induced by Φ on de Rham cohomology.

The definition of Φ implies: $\Phi^*(\omega_A) = \omega_{\theta_\psi} \wedge \eta^r_A$.

\square
Calculating Φ numerically

Theorem

If Φ exists, then

$$AJ_A(\Phi(\Delta_\varphi, r))(\omega_A) = AJ_{X_r}(\Delta_\varphi, r)(\omega_{\theta_\psi} \wedge \eta_A^r).$$

Proof.

Functoriality of Abel-Jacobi maps under correspondences:

$$AJ_A(\Phi(\Delta_\varphi, r))(\omega_A) = AJ_{X_r}(\Delta_\varphi, r)(\Phi^* \omega_A),$$

where

$$\Phi^*: H_{dR}^1(A) \longrightarrow H_{dR}^{2r+1}(X_r)$$

is the map induced by Φ on de Rham cohomology.

The definition of Φ implies: $\Phi^*(\omega_A) = \omega_{\theta_\psi} \wedge \eta_A^r$. \qed
Calculating Φ numerically

Theorem

If Φ exists, then

$$AJ_A(\Phi(\Delta_\varphi, r))(\omega_A) = AJ_{X_r}(\Delta_\varphi, r)(\omega_{\theta_\psi} \wedge \eta^r_A).$$

Proof.

Functoriality of Abel-Jacobi maps under correspondences:

$$AJ_A(\Phi(\Delta_\varphi, r))(\omega_A) = AJ_{X_r}(\Delta_\varphi, r)(\Phi^* \omega_A),$$

where

$$\Phi^* : H^1_{dR}(A) \longrightarrow H^{2r+1}_{dR}(X_r)$$

is the map induced by Φ on de Rham cohomology.

The definition of Φ implies: $\Phi^*(\omega_A) = \omega_{\theta_\psi} \wedge \eta^r_A$.

□
An explicit complex formula

Proposition

Let $\Delta_{\varphi,r}$ be the generalised Heegner cycle on X_r corresponding to the isogeny $\varphi : A \to A'$, and let $\tau \in \mathcal{H}$ satisfy $A'(\mathbb{C}) = \mathbb{C}/\langle 1, \tau \rangle$. Then

$$AJ_{X_r}(\Delta_{\varphi,r})(\omega_{\theta,\psi} \wedge \eta_A^r) = \Omega_A^{-r} \frac{(2\pi i)^{r+1}}{(\tau - \bar{\tau})^r} \int_{i\infty}^{\tau} (z - \bar{\tau})^r \theta_{\psi}(z)dz.$$

Since θ_{ψ} is a modular form of weight $r + 2$, the expression on the right is an “incomplete Eichler integral”.

One recovers the familiar complex-analytic formula for calculating Heegner points, when $r = 0$.
Proposition

Let $\Delta_{\varphi,r}$ be the generalised Heegner cycle on X_r corresponding to the isogeny $\varphi : A \longrightarrow A'$, and let $\tau \in \mathcal{H}$ satisfy $A'(\mathbb{C}) = \mathbb{C}/\langle 1, \tau \rangle$. Then

$$AJ_{X_r}(\Delta_{\varphi,r})(\omega_{\theta,\psi} \wedge \eta_A^r) = \Omega_A^{-r} \frac{(2\pi i)^{r+1}}{(\tau - \bar{\tau})^r} \int_{i\infty}^{\tau} (z - \bar{\tau})^r \theta_{\psi}(z)dz.$$

Since θ_{ψ} is a modular form of weight $r + 2$, the expression on the right is an “incomplete Eichler integral”.

One recovers the familiar complex-analytic formula for calculating Heegner points, when $r = 0$.

An explicit complex formula
An explicit complex formula

Proposition

Let $\Delta_{\varphi,r}$ be the generalised Heegner cycle on X_r corresponding to the isogeny $\varphi : A \rightarrow A'$, and let $\tau \in \mathcal{H}$ satisfy $A'(\mathbb{C}) = \mathbb{C}/\langle 1, \tau \rangle$. Then

$$AJ_{X_r}(\Delta_{\varphi,r})(\omega_{\theta_{\psi}} \wedge \eta^r_A) = \Omega^{-r}_{A} \frac{(2\pi i)^{r+1}}{(\tau - \bar{\tau})^r} \int_{i\infty}^{\tau} (z - \bar{\tau})^r \theta_{\psi}(z)dz.$$

Since θ_{ψ} is a modular form of weight $r + 2$, the expression on the right is an “incomplete Eichler integral”.

One recovers the familiar complex-analytic formula for calculating Heegner points, when $r = 0$.
The position of $\Phi(\Delta_{\varphi}, r)$ in $A(K)$

Conjecture (Bertolini-Prasanna-D)

If $D = 7$, then $\Phi(\Delta_1, r) = 0$. For all $D \in \{11, 19, 43, 67, 163\}$ and all odd $r \geq 1$, the Chow-Heegner point $\Phi(\Delta_1, r)$ belongs to $A(K) \otimes \mathbb{Q}$ and is given by the formula

$$\Phi(\Delta_1, r) = \sqrt{-D} \cdot m_r \cdot P_A,$$

where $m_r \in \mathbb{Z}$ satisfies the formula

$$m_r^2 = \frac{2r!(2\pi \sqrt{D})^r}{\Omega_{A}^{2r+1}} L(\psi_A^{2r+1}, r + 1),$$

and P_A is the generator of $A(\mathbb{Q}) \otimes \mathbb{Q}$ given in the next slide.
The Mordell-Weil generators P_A

<table>
<thead>
<tr>
<th>D</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_6</th>
<th>P_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
<td>−1</td>
<td>0</td>
<td>−107</td>
<td>552</td>
<td>−</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>−1</td>
<td>1</td>
<td>−7</td>
<td>10</td>
<td>(4, 5)</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>−38</td>
<td>90</td>
<td>(0, 9)</td>
</tr>
<tr>
<td>43</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>−860</td>
<td>9707</td>
<td>(17, 0)</td>
</tr>
<tr>
<td>67</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>−7370</td>
<td>243528</td>
<td>$(\frac{201}{4}, \frac{-71}{8})$</td>
</tr>
<tr>
<td>163</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>−2174420</td>
<td>1234136692</td>
<td>(850, −69)</td>
</tr>
</tbody>
</table>
Where does this conjecture come from?

\textbf{p-adic methods}

- The complex Abel-Jacobi map admits a \(p \)-adic analogue:
 \[\text{AJ}_{X_r}^{(p)} : \text{CH}^{r+1}(X_r)_0(\mathbb{C}_p) \longrightarrow \text{Fil}^{r+1} H^{2r+1}_{dR}(X_r/\mathbb{C}_p)^\vee. \]

- Bertolini, Prasanna, D: A \(p \)-adic Gross-Zagier formula relating \(\text{AJ}_{X_r}^{(p)}(\Delta_{\varphi,r}) \) to \(p \)-adic \(L \)-functions.

- In the case at hand, this formula gives (for all odd \(r \geq 1 \))
 \[\frac{\text{AJ}_{X_r}^{(p)}(\Delta_{1,r})(\omega_{\theta_{\psi}} \wedge \eta_A^r)}{\text{AJ}_{X_1}^{(p)}(\Delta_{1,r})(\omega_{\theta_{\psi}} \wedge \eta_A^r)} = \frac{m_r}{m_1}, \]

where
 \[m_r^2 = \frac{2r!(2\pi \sqrt{D})^r}{\Omega_{\psi_A}^{2r+1}} L(\psi_A^{2r+1}, r + 1). \]
Where does this conjecture come from?

\textbf{p-adic methods}

- The complex Abel-Jacobi map admits a \(p\)-adic analogue:

\[
\text{AJ}_{X_r}^{(p)} : \text{CH}^{r+1}(X_r)_0(\mathbb{C}_p) \longrightarrow \text{Fil}^{r+1} H^{2r+1}_{dR}(X_r/\mathbb{C}_p)^\vee.
\]

- \textbf{Bertolini, Prasanna, D}: A \(p\)-adic Gross-Zagier formula relating \(\text{AJ}_{X_r}^{(p)}(\Delta_\varphi, r)\) to \(p\)-adic \(L\)-functions.

- In the case at hand, this formula gives (for all odd \(r \geq 1\))

\[
\frac{\text{AJ}_{X_r}^{(p)}(\Delta_1, r)(\omega_{\theta, \psi} \wedge \eta_A^r)}{\text{AJ}_{X_1}^{(p)}(\Delta_1, r)(\omega_{\theta, \psi} \wedge \eta_A^r)} = \frac{m_r}{m_1},
\]

where

\[
m_r^2 = \frac{2r!(2\pi \sqrt{D})^r}{\Omega_A^{2r+1}} L(\psi_A^{2r+1}, r + 1).
\]

Where does this conjecture come from?

p-adic methods

- The complex Abel-Jacobi map admits a p-adic analogue:

$$
\text{AJ}_{X_r}^{(p)} : CH^{r+1}(X_r)_0(\mathbb{C}_p) \longrightarrow \text{Fil}^{r+1} H^{2r+1}_{dR}(X_r/\mathbb{C}_p)^\vee.
$$

- **Bertolini, Prasanna, D**: A p-adic Gross-Zagier formula relating $\text{AJ}_{X_r}^{(p)}(\Delta_{\varphi}, r)$ to p-adic L-functions.

- In the case at hand, this formula gives (for all odd $r \geq 1$)

$$
\frac{\text{AJ}_{X_r}^{(p)}(\Delta_{1,r})(\omega_{\theta_{\psi}} \wedge \eta_A^r)}{\text{AJ}_{X_1}^{(p)}(\Delta_{1,r})(\omega_{\theta_{\psi}} \wedge \eta_A^r)} = \frac{m_r}{m_1},
$$

where

$$
m_r^2 = \frac{2r!(2\pi \sqrt{D})^r}{\Omega_A^{2r+1}} L(\psi_A^{2r+1}, r + 1).
$$
The outcome of the experiment

Conjecture BDP was tested numerically to 200 digits of decimal accuracy, for all D and all odd $1 \leq r \leq 15$.

Let $\tilde{P}_A \in \mathbb{C}$ be a lift of $P_A \in A(\mathbb{C}) = \mathbb{C}/\Lambda_A$.

The table in the next slide reproduces an integer m_r (of relatively small height) satisfying

$$AJ_{X_r}(\Delta_{1,r}) = \sqrt{-D} \cdot m_r \cdot \tilde{P}_A \pmod{\Lambda_A},$$

to within the calculated accuracy.

The numbers are in perfect agreement with a table of “square roots” of $L(\psi_A^{2r+1}, r + 1)$ produced by Villegas...
The outcome of the experiment

Conjecture BDP was tested numerically to 200 digits of decimal accuracy, for all D and all odd $1 \leq r \leq 15$.

Let $\tilde{P}_A \in \mathbb{C}$ be a lift of $P_A \in A(\mathbb{C}) = \mathbb{C}/\Lambda_A$.

The table in the next slide reproduces an integer m_r (of relatively small height) satisfying

$$AJ_{X_r}(\Delta_{1,r}) = \sqrt{-D} \cdot m_r \cdot \tilde{P}_A \pmod{\Lambda_A},$$

to within the calculated accuracy.

The numbers are in perfect agreement with a table of “square roots” of $L(\psi_2^{2r+1}, r + 1)$ produced by Villegas...
The outcome of the experiment

Conjecture BDP was tested numerically to 200 digits of decimal accuracy, for all D and all odd $1 \leq r \leq 15$.

Let $\tilde{P}_A \in \mathbb{C}$ be a lift of $P_A \in A(\mathbb{C}) = \mathbb{C}/\Lambda_A$.

The table in the next slide reproduces an integer m_r (of relatively small height) satisfying

$$AJ_{X_r}(\Delta_{1,r}) = \sqrt{-D} \cdot m_r \cdot \tilde{P}_A \pmod{\Lambda_A},$$

to within the calculated accuracy.

The numbers are in perfect agreement with a table of “square roots” of $L(\psi^{2r+1}_A, r + 1)$ produced by Villegas...
The outcome of the experiment

Conjecture BDP was tested numerically to 200 digits of decimal accuracy, for all D and all odd $1 \leq r \leq 15$.

Let $\tilde{P}_A \in \mathbb{C}$ be a lift of $P_A \in A(\mathbb{C}) = \mathbb{C}/\Lambda_A$.

The table in the next slide reproduces an integer m_r (of relatively small height) satisfying

$$AJ_{X_r}(\Delta_{1,r}) = \sqrt{-D} \cdot m_r \cdot \tilde{P}_A \pmod{\Lambda_A},$$

to within the calculated accuracy.

The numbers are in perfect agreement with a table of “square roots” of $L(\psi_A^{2r+1}, r + 1)$ produced by Villegas...
<table>
<thead>
<tr>
<th>11</th>
<th>19</th>
<th>43</th>
<th>67</th>
<th>163</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
<td>36</td>
<td>114</td>
</tr>
<tr>
<td>5</td>
<td>−8</td>
<td>−16</td>
<td>440</td>
<td>6920</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>−186</td>
<td>−19026</td>
<td>−156282</td>
</tr>
<tr>
<td>9</td>
<td>304</td>
<td>4176</td>
<td>−8352</td>
<td>−34999056</td>
</tr>
<tr>
<td>11</td>
<td>−352</td>
<td>−33984</td>
<td>33708960</td>
<td>3991188960</td>
</tr>
<tr>
<td>13</td>
<td>76648</td>
<td>545064</td>
<td>−2074549656</td>
<td>46813903656</td>
</tr>
<tr>
<td>15</td>
<td>274736</td>
<td>40959504</td>
<td>47714214240</td>
<td>−90863536574160</td>
</tr>
</tbody>
</table>
Conclusion

All the numerical experiments are consistent with the existence of an algebraic cycle $\Phi \in \text{CH}^{r+1}(V_r)$ attached to Φ_{Hodge}.

This gives some indirect evidence for the Hodge conjecture for some varieties of large dimension (up to 32, in the computed ranges.)

Should one believe more firmly in the Hodge conjecture because of this?
Conclusion

All the numerical experiments are consistent with the existence of an algebraic cycle $\Phi \in \text{CH}^{r+1}(V_r)$ attached to Φ_{Hodge}.

This gives some indirect evidence for the Hodge conjecture for some varieties of large dimension (up to 32, in the computed ranges.)

Should one believe more firmly in the Hodge conjecture because of this?
Thank you for your attention!